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In set theory, one can change a model of ZFC into a new
model of ZFC satisfying new principles, using the forcing
construction [CD66].

Forcing has a topos-theoretic version: starting from a topos,
one can construct a new topos satisfying some new
principles, using the sheafification process [MM92].

Then (Grothendieck) sheafification has been extended to
higher topos theory [Lur09].

We will present here a work-in-progress attempt to define
an homotopy type theoretic version of this process.

In set theory, one can change a model of ZFC into a new
model of ZFC satisfying new principles, using the forcing
construction [CD66].

Forcing has a topos-theoretic version: starting from a topos,
one can construct a new topos satisfying some new
principles, using the sheafification process [MM92].

Then (Grothendieck) sheafification has been extended to
higher topos theory [Lur09].

We will present here a work-in-progress attempt to define
an homotopy type theoretic version of this process.

20
15

-0
6-

29

Lawvere-Tierney Sheafification in Homotopy Type
Theory

Introduction



Lawvere-Tierney
Sheafification

in Homotopy Type
Theory

Kevin Quirin and
Nicolas Tabareau
Inria, Mines de

Nantes
Nantes, France

Introduction

The construction
Idea and context
Definitions
Separation
Sheafification
Consequences

Future works

References

In set theory, one can change a model of ZFC into a new
model of ZFC satisfying new principles, using the forcing
construction [CD66].

Forcing has a topos-theoretic version: starting from a topos,
one can construct a new topos satisfying some new
principles, using the sheafification process [MM92].

Then (Grothendieck) sheafification has been extended to
higher topos theory [Lur09].

We will present here a work-in-progress attempt to define
an homotopy type theoretic version of this process.

In set theory, one can change a model of ZFC into a new
model of ZFC satisfying new principles, using the forcing
construction [CD66].

Forcing has a topos-theoretic version: starting from a topos,
one can construct a new topos satisfying some new
principles, using the sheafification process [MM92].

Then (Grothendieck) sheafification has been extended to
higher topos theory [Lur09].

We will present here a work-in-progress attempt to define
an homotopy type theoretic version of this process.

20
15

-0
6-

29

Lawvere-Tierney Sheafification in Homotopy Type
Theory

Introduction



Lawvere-Tierney
Sheafification

in Homotopy Type
Theory

Kevin Quirin and
Nicolas Tabareau
Inria, Mines de

Nantes
Nantes, France

Introduction

The construction
Idea and context
Definitions
Separation
Sheafification
Consequences

Future works

References

In set theory, one can change a model of ZFC into a new
model of ZFC satisfying new principles, using the forcing
construction [CD66].

Forcing has a topos-theoretic version: starting from a topos,
one can construct a new topos satisfying some new
principles, using the sheafification process [MM92].

Then (Grothendieck) sheafification has been extended to
higher topos theory [Lur09].

We will present here a work-in-progress attempt to define
an homotopy type theoretic version of this process.

In set theory, one can change a model of ZFC into a new
model of ZFC satisfying new principles, using the forcing
construction [CD66].

Forcing has a topos-theoretic version: starting from a topos,
one can construct a new topos satisfying some new
principles, using the sheafification process [MM92].

Then (Grothendieck) sheafification has been extended to
higher topos theory [Lur09].

We will present here a work-in-progress attempt to define
an homotopy type theoretic version of this process.

20
15

-0
6-

29

Lawvere-Tierney Sheafification in Homotopy Type
Theory

Introduction



Lawvere-Tierney
Sheafification

in Homotopy Type
Theory

Kevin Quirin and
Nicolas Tabareau
Inria, Mines de

Nantes
Nantes, France

Introduction

The construction
Idea and context
Definitions
Separation
Sheafification
Consequences

Future works

References

In set theory, one can change a model of ZFC into a new
model of ZFC satisfying new principles, using the forcing
construction [CD66].

Forcing has a topos-theoretic version: starting from a topos,
one can construct a new topos satisfying some new
principles, using the sheafification process [MM92].

Then (Grothendieck) sheafification has been extended to
higher topos theory [Lur09].

We will present here a work-in-progress attempt to define
an homotopy type theoretic version of this process.

In set theory, one can change a model of ZFC into a new
model of ZFC satisfying new principles, using the forcing
construction [CD66].

Forcing has a topos-theoretic version: starting from a topos,
one can construct a new topos satisfying some new
principles, using the sheafification process [MM92].

Then (Grothendieck) sheafification has been extended to
higher topos theory [Lur09].

We will present here a work-in-progress attempt to define
an homotopy type theoretic version of this process.20

15
-0

6-
29

Lawvere-Tierney Sheafification in Homotopy Type
Theory

Introduction



Lawvere-Tierney
Sheafification

in Homotopy Type
Theory

Kevin Quirin and
Nicolas Tabareau
Inria, Mines de

Nantes
Nantes, France

Introduction

The construction
Idea and context
Definitions
Separation
Sheafification
Consequences

Future works

References

Introduction

The construction
Idea and context
Definitions
From types to separated types
From separated types to sheaves
Consequences

Future works

References

Introduction

The construction
Idea and context
Definitions
From types to separated types
From separated types to sheaves
Consequences

Future works

References20
15

-0
6-

29

Lawvere-Tierney Sheafification in Homotopy Type
Theory

Introduction



Lawvere-Tierney
Sheafification

in Homotopy Type
Theory

Kevin Quirin and
Nicolas Tabareau
Inria, Mines de

Nantes
Nantes, France

Introduction

The construction
Idea and context
Definitions
Separation
Sheafification
Consequences

Future works

References

Introduction

The construction
Idea and context
Definitions
From types to separated types
From separated types to sheaves
Consequences

Future works

References

Introduction

The construction
Idea and context
Definitions
From types to separated types
From separated types to sheaves
Consequences

Future works

References20
15

-0
6-

29

Lawvere-Tierney Sheafification in Homotopy Type
Theory

The construction



Lawvere-Tierney
Sheafification

in Homotopy Type
Theory

Kevin Quirin and
Nicolas Tabareau
Inria, Mines de

Nantes
Nantes, France

Introduction

The construction
Idea and context
Definitions
Separation
Sheafification
Consequences

Future works

References

Introduction

The construction
Idea and context
Definitions
From types to separated types
From separated types to sheaves
Consequences

Future works

References

Introduction

The construction
Idea and context
Definitions
From types to separated types
From separated types to sheaves
Consequences

Future works

References20
15

-0
6-

29

Lawvere-Tierney Sheafification in Homotopy Type
Theory

The construction
Idea and context



Lawvere-Tierney
Sheafification

in Homotopy Type
Theory

Kevin Quirin and
Nicolas Tabareau
Inria, Mines de

Nantes
Nantes, France

Introduction

The construction
Idea and context
Definitions
Separation
Sheafification
Consequences

Future works

References

Let’s recall that in a topos, a Lawvere-Tierney topology is
an idempotent map Ω→ Ω, preserving true and products.
We notice that it corresponds to a left-exact modality on
the subobject classifier Ω.

Then, the sheafification process extend this modality to the
whole topos.

We want to follow this idea : from a left exact modality on
HProp, we will define a left exact modality on all (finite)
homotopy levels, by induction on this level.
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1. Here, we call modality the same thing as in Type, but
truncated to n-Type

2. Sets in HoTT (Rijke-Spitters) tells us we can view HProp as
an object classifier : Ω will HProp, and the topos HSet
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Recall : Modalities
We use the same notion of modalities as in [Uni13, Section
7.7], but restricted to be on n-truncated types.

Definition
Let n ≥ −1 be a truncation index. A left exact modality at
level n is the data of
(i) A predicate P : Typen → HProp
(ii) For every n-truncated type A, a n-truncated type #A

such that P(#A)

(iii) For every n-truncated type A, a map ηA : A→ #A
such that
(iv) For every n-truncated types A and B, if P(B) then{

(#A→ B) → (A→ B)
f 7→ f ◦ ηA

is an equivalence.
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(v) for any A : Typen and B : A→ Typen such that P(A)
and

∏
x :A P(Bx), then P (

∑
x :A B(x))

(vi) for any A : Typen and x , y : A, if #A is contractible,
then #(x = y) is contractible.

Conditions (i) to (iv) define a reflective subuniverse, (i) to
(v) a modality.
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Recall: Sheafification in topos

Let j be a Lawvere-Tierney topology on a topos T , with
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Recall: Sheafification in topos

Let j be a Lawvere-Tierney topology on a topos T , with
subobject classifier Ω.

T
{·}T // ΩT

jT
��

(Ωj)
T

Send T to ΩT via the singleton map, then postcompose
with j : Ω→ Ωj
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Key points:
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T has to be a sheaf.
I A closed subobject of a sheaf should be a sheaf.
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The predicate “is n-modal” on homotopy level n will be “is a
Lawvere-Tierney n-sheaf”, and the required modality will be
the n-sheafification.
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the n-sheafification.

20
15

-0
6-

29

Lawvere-Tierney Sheafification in Homotopy Type
Theory

The construction
Idea and context

1. We do this by induction on the homotopy level n. At the
moment, we don’t know how to extend it to not truncated
types

2. From Sets in HoTT (Rijke-Spitters), we know that n-Type
can be seen as an object classifier. We will use this property
;
HProp will be a common object classifier for all levels, and
n-Type will be an object classifier for −-Type(n + 1)
sheafification.
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Context

We work in homotopy type theory, i.e, Martin-Löf type
theory, with univalence axiom (thus functional
extensionality) and higher inductive types (although at the
moment, we only need propositional truncation).
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Context

Let #−1 be a left exact modality on HProp (homotopy level
-1), n > −1 a truncation index, and #n a left exact
modality on n-Type (homotopy level n), coherent with #−1:

If T : HProp, then #nT = #−1T where we still note T the
image of T via the inclusion HProp ↪→ n-Type.
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Context

There, by cumulativity, T can be seen as a n-Type.
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Questions

When generalizing construction in topos, several questions
arises:

I Do we generalize subobjects as n-subobjects (maps
with n-truncated fibers) or (−1)-subobjects
(embeddings) ?

I The proof involves kernel pair of a surjection. How to
generalize it ?

I Do we use usual image, or a n-image arising from
n-connected/n-truncated factorization system ?
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I Do we use usual image, or a n-image arising from
n-connected/n-truncated factorization system ?
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Dense subobject I

Definition
Let E be a type. The closure of a subobject of E with
m-truncated homotopy fibers (or m-subobject of E , for
short), classified by χ : E → m-Type, is the m-subobject of
E classified by #m ◦ χ.
An m-subobject of E classified by χ is said to be closed in
E if it is equal to its closure, i.e, χ = #m ◦ χ.
Practically, a m-subobject of E is just {e : E & χ e}, and
its closure is {e : E & #m (χ e)}.
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1. The closure operator is just postcomposition of
characteristic with the modality.

2. A is closed in E if its closure is E .
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Dense subobject II

Definition
Let E be a type, and χ : E → m-Type. The m-subobject of
E classified by χ is dense in E when its #m-closure is
equivalent to χE , i.e,

∀e : E , #m (χ e) ' 1.

Practically, a m-subobject A of E is dense if, from the #m
point of view, you cannot make a difference between A and
E .
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Restriction

Definition
For any type E, characteristic map χ : E → m-Type and
F : (n + 1)-Type, we define

Φχ,m
E : (E → F )→ ({e : E & χ e} → F )

as the map sending an arrow f : E → F to its restriction
f ◦ π1.

Restriction
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Requirements

We want a predicate on (n + 1)-Type, which we call sheaf
property, satisfying:
I if #n is the identity modality, then everybody should

be a sheaf
I a closed (−1)-subobject of a sheaf should be a sheaf
I the type of modal n-Type should be a sheaf
I if T is a sheaf, then X → T should be a sheaf, for any

X
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Sheaves

Following the topos-theoretic idea, we use:

Definition (Sheaves)
A type F of (n + 1)-Type is a (n + 1)-sheaf for any type E
and all dense (−1)-subobject χ : E → (−1)-Type, Φχ,−1

E is
an equivalence. In other words, the dotted arrow exists and
is unique.

{e : E & χ e} f //

π1
��

F

E
∃!

88
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1. Here, we take (-1)-subobjects, because we want every type
to be a sheaf for the identity modality.

2. The conditions are not satisfied that way; sheaves are not
stable by dependent products.
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Sheaves

Following the topos-theoretic idea, we use:

Definition (Sheaves)
A type F of (n + 1)-Type is a (n + 1)-sheaf if it is
separated, and for any type E and all dense (−1)-subobject
χ : E → (−1)-Type, Φχ,−1

E is an equivalence. In other
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Separated type

Definition (Separated Type)
A type F in (n + 1)-Type is separated if for any type E,
and all dense n-subobject χ : E → n-Type, Φχ,n

E is an
embedding. In other words, the dotted arrow, if exists, is
unique.

{e : E & χ e} f //

π1
��

F

E
!
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Two steps

We will proceed in two steps:
(i) separation: From any T in (n + 1)-Type, we construct

its free separated object �n+1 T .
(ii) completion: We add what is missing for the free

separated type to be a sheaf by using closure.

Two steps
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its free separated object �n+1 T .
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separated type to be a sheaf by using closure.
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1. Not equivalent with + construction. We define the free
separated object, while Grothendieck not.
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Let T : (n + 1)-Type. We define �n+1 T as the image of
#T

n ◦ {·}T , as in

T
{·}T //

µT

��

n-TypeT

#T
n
��

�n+1 T //
(
n-Type#)T

where {·}T is the singleton map λ(t : T ), λ(t ′ : T ), t = t ′.

�n+1 T can be given explicitly by

�n+1 T
def
= Im(λ t : T , λ t ′, #n (t = t ′))
def
=

∑
u:T→n-Type# ‖

∑
a:T (λt, #n (a = t)) = u‖ .
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We note that, as µT is the surjection-embedding factorization, µT is
indeed a surjection.
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At first, we prove that:

Proposition
For any T : (n + 1)-Type, �n+1 T is separated.

Then, we want

Theorem
(�n+1, µ) defines a modality on (n + 1)-Type.
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(�n+1, µ) defines a modality on (n + 1)-Type.
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1. That’s indeed the least we can ask.
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1. That’s indeed the least we can ask.
2. This actually is the hard part of the construction ; especially

the universal property for the reflective subuniverse.
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Sketch of proof

In topoi, the proof goes this way:

I µT is a surjection, thus it coequalizes its kernel pair

T ×�n+1 T T //
π1
π2
// T

µT // �n+1 T

I Then T ×�n+1 T T = ∆, where
∆ = {(x , y) : T 2 & x = y}. The following is a
coequalizer

∆ //
π1
π2
// T

µT // �n+1 T
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Sketch of proof

Then, if Q is any separated type and f : T → Q, it makes
the diagram

∆ //
π1
π2
// T f // Q

commute, thus f factors through �n+1 T .
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We would like to use the same idea, replacing the kernel
pair by the Čech nerve.

At the moment, we only assumed as an axiom that
surjections are colimits of their Čech nerves, seen as graphs.
It allows us to finish the proof.
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For any T in (n + 1)-Type, #n+1T is defined as the
closure of �n+1 T , seen as a subobject of T → n-Type#.
#n+1T can be given explicitly by

#n+1T
def
=

∑
u:T→n-Type#

#−1

∥∥∥∥∥∑
a:T

(λt, #n (a = t)) = u

∥∥∥∥∥ .
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As above, we first prove that:

Proposition
For any T : (n + 1)-Type, #n+1T is a sheaf.
It is true because of the requirement we asked about
sheaves:

Lemma
Let X : (n + 1)-Type and U be a sheaf. If X embeds in U,
and is closed in U, then X is a sheaf.

Then:

Theorem
(#n+1, ν) defines a left-exact modality.
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Sketch of proof

Let T ,Q : (n + 1)-Type such that Q is a sheaf. Let
f : T → Q. Because Q is a sheaf, it is in particular
separated; thus we can extend f to �n+1 f : �n+1 T → Q.

But as #n+1T is the closure of �n+1 T , �n+1 T is dense
into #n+1T , so the sheaf property of Q allows to extend
�n+1 f to #n+1f : #n+1T → Q.
As all these steps are universal, the composition is.

Sketch of proof

Let T ,Q : (n + 1)-Type such that Q is a sheaf. Let
f : T → Q. Because Q is a sheaf, it is in particular
separated; thus we can extend f to �n+1 f : �n+1 T → Q.

But as #n+1T is the closure of �n+1 T , �n+1 T is dense
into #n+1T , so the sheaf property of Q allows to extend
�n+1 f to #n+1f : #n+1T → Q.
As all these steps are universal, the composition is.

20
15

-0
6-

29

Lawvere-Tierney Sheafification in Homotopy Type
Theory

The construction
From separated types to sheaves

Sketch of proof



Lawvere-Tierney
Sheafification

in Homotopy Type
Theory

Kevin Quirin and
Nicolas Tabareau
Inria, Mines de

Nantes
Nantes, France

Introduction

The construction
Idea and context
Definitions
Separation
Sheafification
Consequences

Future works

References

Sketch of proof

Let T ,Q : (n + 1)-Type such that Q is a sheaf. Let
f : T → Q. Because Q is a sheaf, it is in particular
separated; thus we can extend f to �n+1 f : �n+1 T → Q.

But as #n+1T is the closure of �n+1 T , �n+1 T is dense
into #n+1T , so the sheaf property of Q allows to extend
�n+1 f to #n+1f : #n+1T → Q.
As all these steps are universal, the composition is.

Sketch of proof

Let T ,Q : (n + 1)-Type such that Q is a sheaf. Let
f : T → Q. Because Q is a sheaf, it is in particular
separated; thus we can extend f to �n+1 f : �n+1 T → Q.

But as #n+1T is the closure of �n+1 T , �n+1 T is dense
into #n+1T , so the sheaf property of Q allows to extend
�n+1 f to #n+1f : #n+1T → Q.
As all these steps are universal, the composition is.

20
15

-0
6-

29

Lawvere-Tierney Sheafification in Homotopy Type
Theory

The construction
From separated types to sheaves

Sketch of proof



Lawvere-Tierney
Sheafification

in Homotopy Type
Theory

Kevin Quirin and
Nicolas Tabareau
Inria, Mines de

Nantes
Nantes, France

Introduction

The construction
Idea and context
Definitions
Separation
Sheafification
Consequences

Future works

References

Sketch of proof

Let T ,Q : (n + 1)-Type such that Q is a sheaf. Let
f : T → Q. Because Q is a sheaf, it is in particular
separated; thus we can extend f to �n+1 f : �n+1 T → Q.

But as #n+1T is the closure of �n+1 T , �n+1 T is dense
into #n+1T , so the sheaf property of Q allows to extend
�n+1 f to #n+1f : #n+1T → Q.
As all these steps are universal, the composition is.

Sketch of proof

Let T ,Q : (n + 1)-Type such that Q is a sheaf. Let
f : T → Q. Because Q is a sheaf, it is in particular
separated; thus we can extend f to �n+1 f : �n+1 T → Q.

But as #n+1T is the closure of �n+1 T , �n+1 T is dense
into #n+1T , so the sheaf property of Q allows to extend
�n+1 f to #n+1f : #n+1T → Q.
As all these steps are universal, the composition is.

20
15

-0
6-

29

Lawvere-Tierney Sheafification in Homotopy Type
Theory

The construction
From separated types to sheaves

Sketch of proof

again, the modality thing is just technical, and the left-exactness comes
from the compatibility.
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Starting from the left-exact modality #−1P = ¬¬P , this
allows us to build a model satisfying excluded middle for
HProp, without axiom.

With the same modality ¬¬, we hope to be able to
formalize the proof of independance of continuum
hypothesis (actually, just the consistance of ¬HC).
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With the same modality ¬¬, we hope to be able to
formalize the proof of independance of continuum
hypothesis (actually, just the consistance of ¬HC).
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Universes

The construction can be written inductively:

# : ∀ (n : nat), n-Type→ n-Type
• #−1 is a left exact modality on HProp

• #n+1
def
= λT : (n + 1)-Type,∑

u:T→n-Type#

#−1

∥∥∥∥∥∑
a:T

u = (λt, #n (a = t))

∥∥∥∥∥
Here , the universe level increases strictly at each step,
hence it is impossible to take the fixpoint: we would need
universes to be indexed by (non-finite) ordinals.

Universes
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Čech nerve

The main step to finish the construction is to define Čech
nerve in HoTT, as well as the computation of their colimits.

We will rather try to define general simplicial objects.

Čech nerve

The main step to finish the construction is to define Čech
nerve in HoTT, as well as the computation of their colimits.

We will rather try to define general simplicial objects.

20
15

-0
6-

29

Lawvere-Tierney Sheafification in Homotopy Type
Theory

Future works

Čech nerve



Lawvere-Tierney
Sheafification

in Homotopy Type
Theory

Kevin Quirin and
Nicolas Tabareau
Inria, Mines de

Nantes
Nantes, France

Introduction

The construction
Idea and context
Definitions
Separation
Sheafification
Consequences

Future works

References

Simplicial types

Hugo Herbelin [Her14] gives an inductive definition of
semi-simplicial types, which can probably be adapted to
define simplicial types, but is quite unusable for n-types
with n > 4.
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Make a joke about the previous talk. . .
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Homotopy type system

One idea is to use homotopy type system, introduced by
V.V., to see Type as a model category. Then, we should be
able to formalize homotopy colimits in type theory.
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